IRON ABSORPTION; NATURE, AND NURTURE INTERACTIONS

Authors

  • Putu Amrytha Sanjiwani Department of Nutrition, Faculty of Medicine, Universitas Indonesia; Departement of Nutrition, Poltekkes Kemenkes Kupang
  • Dessy Pratiwi Indonesia Health Development Center, Jakarta, Indonesia
  • Nova Lidia Sitorus Health Collaborative Center, Jakarta, Indonesia

DOI:

https://doi.org/10.63953/jisn.v3i1.41

Keywords:

Iron Deficiency Anemia, TMPRSS6 gene polymorphisms, iron bioavailability

Abstract

Background: Iron deficiency anemia (IDA) is a global health concern, particularly affecting women and children. Both genetic and dietary factors contribute to iron absorption and status. Understanding these interactions is vital for effective prevention strategies. Methods: This narrative review examined literature from Scopus-indexed journals (2005–2024) to explore the influence of TMPRSS6 gene polymorphisms—particularly rs855791 and rs4820268—and dietary components (enhancers and inhibitors) on iron absorption. Results: Genetic variations in TMPRSS6, especially rs855791, are associated with increased hepcidin levels, leading to decreased iron absorption and lower hemoglobin. On the dietary side, ascorbic acid and meat proteins significantly enhance non-heme iron uptake, while phytates, polyphenols, and calcium inhibit it. Food processing techniques such as fermentation and
germination can reduce inhibitor effects and improve iron bioavailability. Conclusion: Iron absorption is influenced by both inherited genetic variations and modifiable dietary practices. A combined understanding of these nature and nurture factors is essential to develop personalized and population-based nutritional strategies to prevent and manage IDA effectively

References

McLean E, Cogswell M, Egli I, Wojdyla D, De Benoist B. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. Public Health Nutr. 2009;12(4):444–54. doi: 10.1017/S1368980008002401

Sekartini R, Widjaja NA, Manikam NRM, Jo J, Basrowi RW, Dilantika C. Iron-deficiency anemia: Indonesia’s striving [Internet]. Asia Pac J Paediatr Child Health. 2022;5:3–16. Available from: https://www.apjpch.com/pdfs/2297hJz080011.pdf

Badan Penelitian Dan Pengembangan Kesehatan, Kementerian Kesehatan RI. Riset Kesehatan Dasar (Riskesdas) 2013 [Internet]. 2013. Available from: https://repository.badankebijakan.kemkes.go.id/id/eprint/4467/1/Laporan_riskesdas_2013_final.pdf

Sungkar A, Bardosono S, Irwinda R, Manikam NRM, Sekartini R, Medise BE, et al. A life course approach to the prevention of iron deficiency anemia in Indonesia. Nutrients. 2022;14(2):277. doi: 10.3390/nu14020277

Gibson RS. Principles of nutritional assessment. Oxford university press; 2005.

Sunardi D, Bardosono S, Basrowi RW, Wasito E, Vandenplas Y. Dietary determinants of anemia in children aged 6–36 months: A cross-sectional study in Indonesia. Nutrients. 2021;13(7):2397. doi: 10.3390/nu13072397

Oktarina C, Dilantika C, Sitorus NL, Basrowi RW. Relationship between iron deficiency anemia and stunting in pediatric populations in developing countries: a systematic review and meta-analysis. Children. 2024;11(10):1268. doi: 10.3390/children11101268

Osendarp SJM, Murray-Kolb LE, Black MM. Case study on iron in mental development–in memory of John Beard (1947–2009). Nutr Rev. 2010;68(suppl_1):S48–52. doi:10.1111/j.1753-4887.2010.00331.x

Lee P. Role of matriptase-2 (TMPRSS6) in iron metabolism. Acta Haematol. 2009;122(2–3):87–96. doi: 10.1159/000243792

Keskin EY, Yenicesu İ. Iron-refractory iron deficiency anemia. Turkish Journal of Hematology. 2015;32(1):1. doi: 10.4274/tjh.2014.0288

Gan W, Guan Y, Wu Q, An P, Zhu J, Lu L, et al. Association of TMPRSS6 polymorphisms with ferritin, hemoglobin, and type 2 diabetes risk in a Chinese Han population. Am J Clin Nutr. 2012;95(3):626–32. doi: 10.3945/ajcn.111.025684

KMurray R. Harpers IIIustrated Biochemistry. Lange Medical Books/McGraw-Hill; 2003.

Gonçalves L, G NJ, Afonso C, Vieira A, Maia R, Miranda A, et al. Introduction & Objectives Patients & Methods. 2014;4013.

Kwapisz J, Slomka A, Zekanowska E. Hepcidin and its role in iron homeostasis [Internet]. EJIFCC. 2009;20(2):124. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4975279/

Gichohi-Wainaina WN, Towers GW, Swinkels DW, Zimmermann MB, Feskens EJ, Melse-Boonstra A. Inter-ethnic differences in genetic variants within the transmembrane protease, serine 6 (TMPRSS6) gene associated with iron status indicators: a systematic review with meta-analyses. Genes Nutr. 2015;10:1–15. doi: 10.1007/s12263-014-0442-2

Tanaka T, Roy CN, Yao W, Matteini A, Semba RD, Arking D, et al. A genome-wide association analysis of serum iron concentrations. Blood, The Journal of the American Society of Hematology. 2010;115(1):94–6. doi: 10.1182/blood-2009-07-232496

Chambers JC, Zhang W, Li Y, Sehmi J, Wass MN, Zabaneh D, et al. Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels. Nat Genet. 2009;41(11):1170–2. doi: 10.1038/ng.462

Hunt JR. Dietary and physiological factors that affect the absorption and bioavailability of iron. International journal for vitamin and nutrition research. 2005;75(6):375–84. doi: 10.1024/0300-9831.75.6.375

Prentice AM, Mendoza YA, Pereira D, Cerami C, Wegmuller R, Constable A, et al. Dietary strategies for improving iron status: balancing safety and efficacy. Nutr Rev. 2017;75(1):49–60. doi: 10.1093/nutrit/nuw055

Turner E, Bagriansky J. Increasing bioavailability of iron-fortified foods [Internet]. Food technology (Chicago). 2005;59(8):74–8. Avaliable from: https://www.ift.org/news-and-publications/food-technology-magazine/issues/2005/august/features/increasing-bioavailability-of-iron-fortified-foods

Briawan D, Adrianto Y, Ernawati D, Syamsir E, Aries M. Konsumsi pangan, bioavailibilitas zat besi dan status anemia siswi di Kabupaten Bogor [Internet]. Prosiding Seminar Hasil-Hasil Penelitian Bogor: IPB. 2012. Avaliable from:https://repository.ipb.ac.id/handle/123456789/66156

Hallberg L, Rossander L. Bioavailability of iron from Western-type whole meals. Scand J Gastroenterol. 1982;17(1):151–60. doi: 10.3109/00365528209181061

World Health Organization. Vitamin and mineral requirements in human nutrition [Internet]. World Health Organization; 2004. Available from:https://www.who.int/publications/i/item/9241546123

Lynch SR, Cook JD. Interaction of vitamin C and iron. Ann NY Acad Sci. 1980;355(1):32–44. doi: 10.1111/j.1749-6632.1980.tb21325.x

Zijp IM, Korver O, Tijburg LBM. Effect of tea and other dietary factors on iron absorption. Crit Rev Food Sci Nutr. 2000;40(5):371–98. doi: 10.1080/10408690091189194

Berner LA, Miller DD. Effects of dietary proteins on iron bioavailability—a review. Food Chem. 1985;18(1):47–69. doi: 10.1016/0308-8146(85)90102-5

Christensen JM, Ghannam M, Ayres JW. Effects of divalent amino acids on iron absorption. J Pharm Sci. 1984;73(9):1245–8. doi: 10.1002/jps.2600730913

Hallberg L, Rossander L. Improvement of iron nutrition in developing countries: comparison of adding meat, soy protein, ascorbic acid, citric acid, and ferrous sulphate on iron absorption from a simple Latin American-type of meal. Am J Clin Nutr. 1984;39(4):577–83. doi: 10.1093/ajcn/39.4.577

Hurrell R, Egli I. Iron bioavailability and dietary reference values. Am J Clin Nutr. 2010;91(5):1461S-1467S. doi: 10.3945/ajcn.2010.28674F

Piskin E, Cianciosi D, Gulec S, Tomas M, Capanoglu E. Iron absorption: factors, limitations, and improvement methods. ACS Omega. 2022;7(24):20441–56. doi:10.1021/acsomega.2c01833

Gupta RK, Gangoliya SS, Singh NK. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol. 2015;52:676–84. doi:10.1007/s13197-013-0978-y

Nair KM, Iyengar V. Iron content, bioavailability & factors affecting iron status of Indians [Internet]. Indian Journal of Medical Research. 2009;130(5):634–45. Available from: https://www.researchgate.net/publication/41102489_Iron_content_bioavailability_factors_affecting_iron_status_of_Indians

Al Hasan SM, Hassan M, Saha S, Islam M, Billah M, Islam S. Dietary phytate intake inhibits the bioavailability of iron and calcium in the diets of pregnant women in rural Bangladesh: a cross-sectional study. BMC Nutr. 2016;2:1–10. doi: 10.1186/s40795-016-0064-8

Petry N, Egli I, Zeder C, Walczyk T, Hurrell R. Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J Nutr. 2010;140(11):1977–82. doi: 10.3945/jn.110.125369

Dary O, Hurrell R. Guidelines on food fortification with micronutrients. World Health Organization, Food and Agricultural Organization of the United Nations: Geneva, Switzerland [Internet]. 2006. 376 p. Available from: https://iris.who.int/bitstream/handle/10665/43412/9241594012_eng.pdf

Anam C, Handayani S. Kajian kadar asam fitat dan kadar protein selama pembuatan tempe kara benguk (mucuna pruriens, l) dengan variasi pengecilan ukuran dan lama fermentasi. Jurnal Teknologi Hasil Pertanian. 2010;3(1):34–43. doi:10.20961/jthp.v0i0.13620

Bæch SB, Hansen M, Bukhave K, Jensen M, Sørensen SS, Kristensen L, et al. Nonheme-iron absorption from a phytate-rich meal is increased by the addition of small amounts of pork meat. Am J Clin Nutr. 2003;77(1):173–9. doi: 10.1093/ajcn/77.1.173

Rossander L. Effect of dietary fiber on iron absorption in man. Scand J Gastroenterol. 1987;22(sup129):68–72. doi: 10.3109/00365528709095854

Agrizzi Verediano T, Agarwal N, Juste Contin Gomes M, Martino HSD, Tako E. Effects of dietary fiber on intestinal iron absorption, and physiological status: a systematic review of in vivo and clinical studies. Crit Rev Food Sci Nutr. 2023;63(27):9017–32. doi:10.1080/10408398.2022.2060933

Ma Q, Kim E, Lindsay EA, Han O. Dose-dependent manner in human intestinal Caco-2 cells. J Food Sci. 2012;76:1–19. doi: 10.1111/j.1750-3841.2011.02184.x

Mascitelli L, Goldstein MR. Inhibition of iron absorption by polyphenols as an anticancer mechanism. In: Polyphenols in Human Health and Disease. Elsevier; 2014. p. 1283–6. doi: 10.1093/qjmed/hcq239

Dueik V, Chen BK, Diosady LL. Iron‐polyphenol interaction reduces iron bioavailability in fortified tea: Competing complexation to ensure iron bioavailability. J Food Qual. 2017(1):1805047. doi: 10.1155/2017/1805047

Gaitán D, Flores S, Saavedra P, Miranda C, Olivares M, Arredondo M, et al. Calcium does not inhibit the absorption of 5 milligrams of nonheme or heme iron at doses less than 800 milligrams in nonpregnant women. J Nutr. 2011;141(9):1652–6. doi:10.3945/jn.111.138651

Lönnerdal B. Calcium and iron absorption—mechanisms and public health relevance. International Journal for Vitamin and Nutrition Research. 2010;80(4):293. doi:10.1024/0300-9831/a000036

Hallberg L. Does calcium interfere with iron absorption? Vol. 68, The American journal of clinical nutrition. Oxford University Press; 1998. p. 3–4. doi: 10.1093/ajcn/68.1.3

Kondaiah P, Yaduvanshi PS, Sharp PA, Pullakhandam R. Iron and zinc homeostasis and interactions: does enteric zinc excretion cross-talk with intestinal iron absorption? Nutrients. 2019;11(8):1885. doi: 10.3390/nu11081885

Bonsmann SSG, Walczyk T, Renggli S, Hurrell RF. Oxalic acid does not influence nonhaem iron absorption in humans: a comparison of kale and spinach meals. Eur J Clin Nutr. 2008 Mar 18;62(3):336–41; 10.1038/sj.ejcn.1602721

Downloads

Published

2025-03-30