IRON ABSORPTION; NATURE, AND NURTURE INTERACTIONS
DOI:
https://doi.org/10.63953/jisn.v3i1.41Keywords:
Iron Deficiency Anemia, TMPRSS6 gene polymorphisms, iron bioavailabilityAbstract
Background: Iron deficiency anemia (IDA) is a global health concern, particularly affecting women and children. Both genetic and dietary factors contribute to iron absorption and status. Understanding these interactions is vital for effective prevention strategies. Methods: This narrative review examined literature from Scopus-indexed journals (2005–2024) to explore the influence of TMPRSS6 gene polymorphisms—particularly rs855791 and rs4820268—and dietary components (enhancers and inhibitors) on iron absorption. Results: Genetic variations in TMPRSS6, especially rs855791, are associated with increased hepcidin levels, leading to decreased iron absorption and lower hemoglobin. On the dietary side, ascorbic acid and meat proteins significantly enhance non-heme iron uptake, while phytates, polyphenols, and calcium inhibit it. Food processing techniques such as fermentation and
germination can reduce inhibitor effects and improve iron bioavailability. Conclusion: Iron absorption is influenced by both inherited genetic variations and modifiable dietary practices. A combined understanding of these nature and nurture factors is essential to develop personalized and population-based nutritional strategies to prevent and manage IDA effectively
References
McLean E, Cogswell M, Egli I, Wojdyla D, De Benoist B. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. Public Health Nutr. 2009;12(4):444–54. doi: 10.1017/S1368980008002401
Sekartini R, Widjaja NA, Manikam NRM, Jo J, Basrowi RW, Dilantika C. Iron-deficiency anemia: Indonesia’s striving [Internet]. Asia Pac J Paediatr Child Health. 2022;5:3–16. Available from: https://www.apjpch.com/pdfs/2297hJz080011.pdf
Badan Penelitian Dan Pengembangan Kesehatan, Kementerian Kesehatan RI. Riset Kesehatan Dasar (Riskesdas) 2013 [Internet]. 2013. Available from: https://repository.badankebijakan.kemkes.go.id/id/eprint/4467/1/Laporan_riskesdas_2013_final.pdf
Sungkar A, Bardosono S, Irwinda R, Manikam NRM, Sekartini R, Medise BE, et al. A life course approach to the prevention of iron deficiency anemia in Indonesia. Nutrients. 2022;14(2):277. doi: 10.3390/nu14020277
Gibson RS. Principles of nutritional assessment. Oxford university press; 2005.
Sunardi D, Bardosono S, Basrowi RW, Wasito E, Vandenplas Y. Dietary determinants of anemia in children aged 6–36 months: A cross-sectional study in Indonesia. Nutrients. 2021;13(7):2397. doi: 10.3390/nu13072397
Oktarina C, Dilantika C, Sitorus NL, Basrowi RW. Relationship between iron deficiency anemia and stunting in pediatric populations in developing countries: a systematic review and meta-analysis. Children. 2024;11(10):1268. doi: 10.3390/children11101268
Osendarp SJM, Murray-Kolb LE, Black MM. Case study on iron in mental development–in memory of John Beard (1947–2009). Nutr Rev. 2010;68(suppl_1):S48–52. doi:10.1111/j.1753-4887.2010.00331.x
Lee P. Role of matriptase-2 (TMPRSS6) in iron metabolism. Acta Haematol. 2009;122(2–3):87–96. doi: 10.1159/000243792
Keskin EY, Yenicesu İ. Iron-refractory iron deficiency anemia. Turkish Journal of Hematology. 2015;32(1):1. doi: 10.4274/tjh.2014.0288
Gan W, Guan Y, Wu Q, An P, Zhu J, Lu L, et al. Association of TMPRSS6 polymorphisms with ferritin, hemoglobin, and type 2 diabetes risk in a Chinese Han population. Am J Clin Nutr. 2012;95(3):626–32. doi: 10.3945/ajcn.111.025684
KMurray R. Harpers IIIustrated Biochemistry. Lange Medical Books/McGraw-Hill; 2003.
Gonçalves L, G NJ, Afonso C, Vieira A, Maia R, Miranda A, et al. Introduction & Objectives Patients & Methods. 2014;4013.
Kwapisz J, Slomka A, Zekanowska E. Hepcidin and its role in iron homeostasis [Internet]. EJIFCC. 2009;20(2):124. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4975279/
Gichohi-Wainaina WN, Towers GW, Swinkels DW, Zimmermann MB, Feskens EJ, Melse-Boonstra A. Inter-ethnic differences in genetic variants within the transmembrane protease, serine 6 (TMPRSS6) gene associated with iron status indicators: a systematic review with meta-analyses. Genes Nutr. 2015;10:1–15. doi: 10.1007/s12263-014-0442-2
Tanaka T, Roy CN, Yao W, Matteini A, Semba RD, Arking D, et al. A genome-wide association analysis of serum iron concentrations. Blood, The Journal of the American Society of Hematology. 2010;115(1):94–6. doi: 10.1182/blood-2009-07-232496
Chambers JC, Zhang W, Li Y, Sehmi J, Wass MN, Zabaneh D, et al. Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels. Nat Genet. 2009;41(11):1170–2. doi: 10.1038/ng.462
Hunt JR. Dietary and physiological factors that affect the absorption and bioavailability of iron. International journal for vitamin and nutrition research. 2005;75(6):375–84. doi: 10.1024/0300-9831.75.6.375
Prentice AM, Mendoza YA, Pereira D, Cerami C, Wegmuller R, Constable A, et al. Dietary strategies for improving iron status: balancing safety and efficacy. Nutr Rev. 2017;75(1):49–60. doi: 10.1093/nutrit/nuw055
Turner E, Bagriansky J. Increasing bioavailability of iron-fortified foods [Internet]. Food technology (Chicago). 2005;59(8):74–8. Avaliable from: https://www.ift.org/news-and-publications/food-technology-magazine/issues/2005/august/features/increasing-bioavailability-of-iron-fortified-foods
Briawan D, Adrianto Y, Ernawati D, Syamsir E, Aries M. Konsumsi pangan, bioavailibilitas zat besi dan status anemia siswi di Kabupaten Bogor [Internet]. Prosiding Seminar Hasil-Hasil Penelitian Bogor: IPB. 2012. Avaliable from:https://repository.ipb.ac.id/handle/123456789/66156
Hallberg L, Rossander L. Bioavailability of iron from Western-type whole meals. Scand J Gastroenterol. 1982;17(1):151–60. doi: 10.3109/00365528209181061
World Health Organization. Vitamin and mineral requirements in human nutrition [Internet]. World Health Organization; 2004. Available from:https://www.who.int/publications/i/item/9241546123
Lynch SR, Cook JD. Interaction of vitamin C and iron. Ann NY Acad Sci. 1980;355(1):32–44. doi: 10.1111/j.1749-6632.1980.tb21325.x
Zijp IM, Korver O, Tijburg LBM. Effect of tea and other dietary factors on iron absorption. Crit Rev Food Sci Nutr. 2000;40(5):371–98. doi: 10.1080/10408690091189194
Berner LA, Miller DD. Effects of dietary proteins on iron bioavailability—a review. Food Chem. 1985;18(1):47–69. doi: 10.1016/0308-8146(85)90102-5
Christensen JM, Ghannam M, Ayres JW. Effects of divalent amino acids on iron absorption. J Pharm Sci. 1984;73(9):1245–8. doi: 10.1002/jps.2600730913
Hallberg L, Rossander L. Improvement of iron nutrition in developing countries: comparison of adding meat, soy protein, ascorbic acid, citric acid, and ferrous sulphate on iron absorption from a simple Latin American-type of meal. Am J Clin Nutr. 1984;39(4):577–83. doi: 10.1093/ajcn/39.4.577
Hurrell R, Egli I. Iron bioavailability and dietary reference values. Am J Clin Nutr. 2010;91(5):1461S-1467S. doi: 10.3945/ajcn.2010.28674F
Piskin E, Cianciosi D, Gulec S, Tomas M, Capanoglu E. Iron absorption: factors, limitations, and improvement methods. ACS Omega. 2022;7(24):20441–56. doi:10.1021/acsomega.2c01833
Gupta RK, Gangoliya SS, Singh NK. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol. 2015;52:676–84. doi:10.1007/s13197-013-0978-y
Nair KM, Iyengar V. Iron content, bioavailability & factors affecting iron status of Indians [Internet]. Indian Journal of Medical Research. 2009;130(5):634–45. Available from: https://www.researchgate.net/publication/41102489_Iron_content_bioavailability_factors_affecting_iron_status_of_Indians
Al Hasan SM, Hassan M, Saha S, Islam M, Billah M, Islam S. Dietary phytate intake inhibits the bioavailability of iron and calcium in the diets of pregnant women in rural Bangladesh: a cross-sectional study. BMC Nutr. 2016;2:1–10. doi: 10.1186/s40795-016-0064-8
Petry N, Egli I, Zeder C, Walczyk T, Hurrell R. Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J Nutr. 2010;140(11):1977–82. doi: 10.3945/jn.110.125369
Dary O, Hurrell R. Guidelines on food fortification with micronutrients. World Health Organization, Food and Agricultural Organization of the United Nations: Geneva, Switzerland [Internet]. 2006. 376 p. Available from: https://iris.who.int/bitstream/handle/10665/43412/9241594012_eng.pdf
Anam C, Handayani S. Kajian kadar asam fitat dan kadar protein selama pembuatan tempe kara benguk (mucuna pruriens, l) dengan variasi pengecilan ukuran dan lama fermentasi. Jurnal Teknologi Hasil Pertanian. 2010;3(1):34–43. doi:10.20961/jthp.v0i0.13620
Bæch SB, Hansen M, Bukhave K, Jensen M, Sørensen SS, Kristensen L, et al. Nonheme-iron absorption from a phytate-rich meal is increased by the addition of small amounts of pork meat. Am J Clin Nutr. 2003;77(1):173–9. doi: 10.1093/ajcn/77.1.173
Rossander L. Effect of dietary fiber on iron absorption in man. Scand J Gastroenterol. 1987;22(sup129):68–72. doi: 10.3109/00365528709095854
Agrizzi Verediano T, Agarwal N, Juste Contin Gomes M, Martino HSD, Tako E. Effects of dietary fiber on intestinal iron absorption, and physiological status: a systematic review of in vivo and clinical studies. Crit Rev Food Sci Nutr. 2023;63(27):9017–32. doi:10.1080/10408398.2022.2060933
Ma Q, Kim E, Lindsay EA, Han O. Dose-dependent manner in human intestinal Caco-2 cells. J Food Sci. 2012;76:1–19. doi: 10.1111/j.1750-3841.2011.02184.x
Mascitelli L, Goldstein MR. Inhibition of iron absorption by polyphenols as an anticancer mechanism. In: Polyphenols in Human Health and Disease. Elsevier; 2014. p. 1283–6. doi: 10.1093/qjmed/hcq239
Dueik V, Chen BK, Diosady LL. Iron‐polyphenol interaction reduces iron bioavailability in fortified tea: Competing complexation to ensure iron bioavailability. J Food Qual. 2017(1):1805047. doi: 10.1155/2017/1805047
Gaitán D, Flores S, Saavedra P, Miranda C, Olivares M, Arredondo M, et al. Calcium does not inhibit the absorption of 5 milligrams of nonheme or heme iron at doses less than 800 milligrams in nonpregnant women. J Nutr. 2011;141(9):1652–6. doi:10.3945/jn.111.138651
Lönnerdal B. Calcium and iron absorption—mechanisms and public health relevance. International Journal for Vitamin and Nutrition Research. 2010;80(4):293. doi:10.1024/0300-9831/a000036
Hallberg L. Does calcium interfere with iron absorption? Vol. 68, The American journal of clinical nutrition. Oxford University Press; 1998. p. 3–4. doi: 10.1093/ajcn/68.1.3
Kondaiah P, Yaduvanshi PS, Sharp PA, Pullakhandam R. Iron and zinc homeostasis and interactions: does enteric zinc excretion cross-talk with intestinal iron absorption? Nutrients. 2019;11(8):1885. doi: 10.3390/nu11081885
Bonsmann SSG, Walczyk T, Renggli S, Hurrell RF. Oxalic acid does not influence nonhaem iron absorption in humans: a comparison of kale and spinach meals. Eur J Clin Nutr. 2008 Mar 18;62(3):336–41; 10.1038/sj.ejcn.1602721
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Putu Amrytha Sanjiwani, Dessy Pratiwi, Nova Lidia Sitorus

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC-BY-SA) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
LICENSE TO PUBLISH
- All material published by the Journal of Indonesian Specialized Nutrition is protected under International copyright and intellectual property laws. Journal of Indonesian Specialized Nutrition is licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC-BY-SA) or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly works.
- This license permits anyone to compose, repair, and make derivative creations even for commercial purposes, as long as appropriate credit and proper acknowledgment of the original publication from a journal are made to allow users to trace back to the original manuscript and author.
- You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. If you remix, transform or build upon the material, you must distribute your contributions under the same license as the original.










